3.4.99 \(\int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{7/2}} \, dx\) [399]

Optimal. Leaf size=164 \[ \frac {12 i a}{35 d e^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}+\frac {32 i a \sqrt {e \sec (c+d x)}}{35 d e^4 \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}}-\frac {16 i \sqrt {a+i a \tan (c+d x)}}{35 d e^2 (e \sec (c+d x))^{3/2}} \]

[Out]

12/35*I*a/d/e^2/(e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2)+32/35*I*a*(e*sec(d*x+c))^(1/2)/d/e^4/(a+I*a*tan(
d*x+c))^(1/2)-2/7*I*(a+I*a*tan(d*x+c))^(1/2)/d/(e*sec(d*x+c))^(7/2)-16/35*I*(a+I*a*tan(d*x+c))^(1/2)/d/e^2/(e*
sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3578, 3583, 3569} \begin {gather*} \frac {32 i a \sqrt {e \sec (c+d x)}}{35 d e^4 \sqrt {a+i a \tan (c+d x)}}+\frac {12 i a}{35 d e^2 \sqrt {a+i a \tan (c+d x)} (e \sec (c+d x))^{3/2}}-\frac {16 i \sqrt {a+i a \tan (c+d x)}}{35 d e^2 (e \sec (c+d x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]/(e*Sec[c + d*x])^(7/2),x]

[Out]

(((12*I)/35)*a)/(d*e^2*(e*Sec[c + d*x])^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]) + (((32*I)/35)*a*Sqrt[e*Sec[c + d*x]
])/(d*e^4*Sqrt[a + I*a*Tan[c + d*x]]) - (((2*I)/7)*Sqrt[a + I*a*Tan[c + d*x]])/(d*(e*Sec[c + d*x])^(7/2)) - ((
(16*I)/35)*Sqrt[a + I*a*Tan[c + d*x]])/(d*e^2*(e*Sec[c + d*x])^(3/2))

Rule 3569

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rule 3578

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*S
ec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Dist[a*((m + n)/(m*d^2)), Int[(d*Sec[e + f*x])^(m + 2)*(
a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m, -
1] && IntegersQ[2*m, 2*n]

Rule 3583

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{7/2}} \, dx &=-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}}+\frac {(6 a) \int \frac {1}{(e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}} \, dx}{7 e^2}\\ &=\frac {12 i a}{35 d e^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}}+\frac {24 \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx}{35 e^2}\\ &=\frac {12 i a}{35 d e^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}}-\frac {16 i \sqrt {a+i a \tan (c+d x)}}{35 d e^2 (e \sec (c+d x))^{3/2}}+\frac {(16 a) \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{35 e^4}\\ &=\frac {12 i a}{35 d e^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}+\frac {32 i a \sqrt {e \sec (c+d x)}}{35 d e^4 \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{7 d (e \sec (c+d x))^{7/2}}-\frac {16 i \sqrt {a+i a \tan (c+d x)}}{35 d e^2 (e \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.33, size = 80, normalized size = 0.49 \begin {gather*} \frac {(35 i \cos (c+d x)+i \cos (3 (c+d x))+70 \sin (c+d x)+6 \sin (3 (c+d x))) \sqrt {a+i a \tan (c+d x)}}{70 d e^3 \sqrt {e \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/(e*Sec[c + d*x])^(7/2),x]

[Out]

(((35*I)*Cos[c + d*x] + I*Cos[3*(c + d*x)] + 70*Sin[c + d*x] + 6*Sin[3*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]])
/(70*d*e^3*Sqrt[e*Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.89, size = 102, normalized size = 0.62

method result size
default \(\frac {2 \left (i \left (\cos ^{3}\left (d x +c \right )\right )+6 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+8 i \cos \left (d x +c \right )+16 \sin \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {7}{2}}}{35 d \,e^{7}}\) \(102\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/35/d*(I*cos(d*x+c)^3+6*cos(d*x+c)^2*sin(d*x+c)+8*I*cos(d*x+c)+16*sin(d*x+c))*cos(d*x+c)^4*(a*(I*sin(d*x+c)+c
os(d*x+c))/cos(d*x+c))^(1/2)*(e/cos(d*x+c))^(7/2)/e^7

________________________________________________________________________________________

Maxima [A]
time = 0.58, size = 177, normalized size = 1.08 \begin {gather*} \frac {\sqrt {a} {\left (7 i \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 5 i \, \cos \left (\frac {7}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 35 i \, \cos \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 105 i \, \cos \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 7 \, \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sin \left (\frac {7}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 35 \, \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 105 \, \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} e^{\left (-\frac {7}{2}\right )}}{140 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

1/140*sqrt(a)*(7*I*cos(5/2*d*x + 5/2*c) - 5*I*cos(7/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 3
5*I*cos(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 105*I*cos(1/5*arctan2(sin(5/2*d*x + 5/2*c),
 cos(5/2*d*x + 5/2*c))) + 7*sin(5/2*d*x + 5/2*c) + 5*sin(7/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c
))) + 35*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 105*sin(1/5*arctan2(sin(5/2*d*x + 5/2*
c), cos(5/2*d*x + 5/2*c))))*e^(-7/2)/d

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 91, normalized size = 0.55 \begin {gather*} \frac {\sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-5 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 40 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 70 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 112 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 7 i\right )} e^{\left (-\frac {5}{2} i \, d x - \frac {5}{2} i \, c - \frac {7}{2}\right )}}{140 \, d \sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/140*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-5*I*e^(8*I*d*x + 8*I*c) - 40*I*e^(6*I*d*x + 6*I*c) + 70*I*e^(4*I*d*x
 + 4*I*c) + 112*I*e^(2*I*d*x + 2*I*c) + 7*I)*e^(-5/2*I*d*x - 5/2*I*c - 7/2)/(d*sqrt(e^(2*I*d*x + 2*I*c) + 1))

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)/(e*sec(d*x+c))**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4370 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*e^(-7/2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [B]
time = 5.16, size = 109, normalized size = 0.66 \begin {gather*} \frac {\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (2\,c+2\,d\,x\right )+1+\sin \left (2\,c+2\,d\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,c+2\,d\,x\right )+1}}\,\left (\cos \left (2\,c+2\,d\,x\right )\,36{}\mathrm {i}+\cos \left (4\,c+4\,d\,x\right )\,1{}\mathrm {i}+76\,\sin \left (2\,c+2\,d\,x\right )+6\,\sin \left (4\,c+4\,d\,x\right )+35{}\mathrm {i}\right )}{140\,d\,e^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(1/2)/(e/cos(c + d*x))^(7/2),x)

[Out]

((e/cos(c + d*x))^(1/2)*((a*(cos(2*c + 2*d*x) + sin(2*c + 2*d*x)*1i + 1))/(cos(2*c + 2*d*x) + 1))^(1/2)*(cos(2
*c + 2*d*x)*36i + cos(4*c + 4*d*x)*1i + 76*sin(2*c + 2*d*x) + 6*sin(4*c + 4*d*x) + 35i))/(140*d*e^4)

________________________________________________________________________________________